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ABSTRACT During manufacturing process of electronic products, surface mounted technology component
dispensing is a key technology in the process of chip production, which affects the quality of products.
However, majority dispensing methods utilize rule-based methods, which are not robust to different styles of
backgrounds and need to modify parameters when they face different templates. To address the above issues,
a YOLOv5-based lightweight multi-attention detection network is proposed for SMT dispensing electronic
mount components identification, in which cross and shuffle attention and ghost and multi-attention modules
are designed to reduce computational complexity and locate dispensing components rapidly. Moreover, the
SMT intelligent dispensing pipeline is realized and experiments on the self-constructed dispensing dataset
and experiments show that YOLOvS5-Light reaches the best frames 17 FPS on Jetson Nano and satisfied
accuracy with mAP@.5 of 99.5% and mAP@.75 of 99.4%. Also, the inference speed is improved from
7.3 ms to 1.0 ms while the space complexity is improved from 10.2 MB to 6.2 MB, which indicates that the
proposed dispensing system could implement fast detection under minimizing accuracy loss.

INDEX TERMS Surface mounted technology, dispensing component detection, lightweight attention, edge
deployment.

I. INTRODUCTION The basic elements of SMT includes dispensing, mounting,

The assembly of electronic products is an important link in
the manufacturing industry of electronic products. Surface
mounted technology (SMT) has become the most popular
technology in the electronic assembly industry because of
its high reliability and low defect rates of solder joints.

The associate editor coordinating the review of this manuscript and
approving it for publication was Yilun Shang.

reflow welding, cleaning, testing and repair. SMT dispensing
prevents large components (such as central processing
unit (CPU), random access memory (RAM) and peripheral
interface (I0)) that have been attached falling off due to the
solder paste melting in the secondary furnace. Therefore,
it is necessary to use the dispensing machine to place the
glue around the component and fix it to the printed circuit
board (PCB).
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Traditional dispensing methods are manual dispensing
that is suitable for small-scale production. However, with
the rapid development of the electronic industry, manual
dispensing is no longer suitable because of the fatigue
of employees and it has been replaced by automatic
dispensing. The automatic dispensing presets the PCB style
and measures in advance the relative position between
target components and the mark point on the PCB, then
inputs the relative position into the dispensing machine.
During dispensing, the dispensing machine identifies the
mark point through machine vision, then drive the dispensing
manipulator to move to the dispensing position for dispens-
ing. At present, many works contribute to the automatic
dispensing.

Sobaszek et al. propose a robot task scheduling mech-
anism and establish an alternative schedule to control
the dispensing [1]. Sunny et al. propose a double-head
dispensing machine based on machine vision to improve the
accuracy, which can effectively deal with PCB tilting [2].
Murali Ram et al. design a method based on the three-
dimensional (3D) pose estimation and 3D reconstruction
for 3D object dispensing [3]. Dimitriou et al. use a 3D
convolutional neural network to evaluate the dispensing
quality [4]. Iftikhar et al. propose a machine model based on
the principle of machine learning for SMT [5]. Pagano et al.
use point cloud to recognize two-dimensional (2D) and
3D objects and propose a method of coordinate conversion
between vision system and the robot [6]. Yongfei et al. pro-
pose a template matching method for dispensing system [7].
Peng et al. propose an improved template matching algorithm
based on the geometric characteristics of mark points to
position the dispensing target [8]. Zhao et al. propose
a dispensing machine that could locate the spot position
of PCB accurately and complete the dispensing operation
through machine vision [9]. Pagano et al. propose a method
for trajectory plan of dispensing robots based on image
processing and point cloud [10]. Wang et al. propose a
method of detecting glue dispensing feature points based
on the digital signal processor [11]. Zhao et al. propose a
dispensing quality evaluation method based on the combi-
nation of entropy weight fuzzy logic and support vector
machine [12]. Pei et al. [14] model the energy consumption
real-time sensing technology based on mutual inductance
and a multi-granularity production line energy consumption.
Zhu et al. [15] design intelligent manufacturing experiments
based on machine learning for teaching. Chen et al. [16]
evaluate an advanced solder paste dispenser and alter-
native solder paste models to get engineering ready for
miniaturization. Thielen et al. [17] investigate a data-driven
approach to predict quality of these solder depots in terms
of height, area and volume including both process data and
previous dispensing quality. In the above methods, major
detection methods are based on template matching and image
processing to obtain the position of dispensing components.
Despite high accuracy could be achieved while it’s complex
and sensitive to noise. Moreover, if different styles of PCB are
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given, parameters have to be reset, which is time-consuming
and lack of intelligence.

To solve the above challenges, in this paper, we rethink
existed detection networks and design an intelligent dispens-
ing system based on lightweight networks, which has smaller
parameters and faster inference speed. The contributions of
this paper are as follows:

o A lightweight dispensing system is designed, which
acquires dispensing component contours by easily-
deployed networks and implements motion planning via
robot operating system (ROS).

o YOLOvS5-Light is proposed for real-time detection and
deployment costs. Lightweight cross shuffle attention
(CSA) and ghost and multi-attention (GMA) mod-
ules are designed to extract features without massive
parameters and compact high-level features to avoid
meaningless representations.

o Experiments on the dispensing dataset and public
benchmark demonstrate that the dispensing system can
achieve great precision and speed as well as robustness,
which could serve as a strong baseline for SMT
dispensing.

Il. RELATED WORK

A. LIGHTWEIGHT OBJECT DETECTION

Due to the industrial demand for inference speed, there
are many works for improving the real-time perfor-
mance of models For example, Chen etal. [18] propose
a lightweight object detection network in UAV vision
based on YOLOv4. Zhouetal. [19] present a dual-path
network with a lightweight attention scheme for real-time
object detection. Yue et al. [20] develop a lightweight object
detection network for single-class multi-deformation objects
to promote the practical application of object detection net-
works. Guo et al. [21] propose a underwater target detection
method that optimizes YOLOv8s to make it more suitable
for real-time and underwater environments. Hua et al. [22]
propose. a new lightweight network for efficient UAV object
detection. However, mainstream methods overlook the model
inference ability in situations where computing resources
are limited, which is difficult to be applied into industrial
production such as SMT. Unlike them, for fast production,
we rethink the structure of YOLOvVS and empower it with
stronger real-time and lightweight, which means it could be
deployed into the embedded device to optimize deployment
costs.

B. ATTENTION MECHANISM

Although the scaling law suggests that the size of the model
helps improve performance on related tasks, effective atten-
tion mechanisms can assist the model to learn relevant repre-
sentations faster. For example, Shen et al. [23] propose a mul-
tiple attention mechanism enhanced YOLOX to detect tiny
objects against complex backgrounds. Qi et al. [24] introduce
an improved YOLOVS incorporating FasterNet and attention
mechanisms to enhance the detection of foreign objects
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on railways and Airport runways. Zhao et al. [25] propose
YOLOVS-QR based on YOLOVS to detect quick response
code defects. Wu et al. [26] propose an improved YOLOvS5s
network integrating a multi-scale feature fusion module with
attention mechanism for crowded road object detection tasks.
Ouyang et al. [27] propose an improved underwater object
detection model, integrating advanced attention mechanisms
and a dilated large-kernel. YOLOv5-Light also benefits
from attention mechanisms. But unlike traditional attention
mechanisms, which rely on larger networks for feature
extraction and global information aggregation, the proposed
CSA and GMA modules prioritize computational efficiency
and real-time performance. CSA combines MobileNetv3 and
ShuffleNetv2 for lightweight feature extraction, while GMA
utilizes GhostConv for efficient feature fusion, enabling high-
speed detection without sacrificing accuracy.

lll. METHODOLOGY

In this section, the dispensing system would be illustrated,
which combines object detection and control algorithms to
dispense.

A. OVERVIEW

The whole system is divided into two parts: vision and
control, which is shown in Fig. 1. In the visual part,
it first acquires RGB images of the PCB as well as depth
images captured by D455, then the RGB image is fed
into YOLOVS5-Light to locate dispensing components. The
detection results are fed into robust Canny and Hough
transform for edge detection to obtain contours of dispensing
components. In the control part, the eye-to-hand system is
built, and Hough transform results and depth information
are combined to carry out coordinate transformation, which
means coordinates in the base coordinate system of the
manipulator are obtained and then transmitted to ROS for
motion planning to control robot manipulation.

Motion Planning

3D coordinates

‘—-
Robust | - Hand-cye
Canny : Calibration
1 )
]
2D coordinates ]
Hough )
L y \ y
< Vision o A Control o

FIGURE 1. The pipeline of the dispensing system, which is divided into
visual and control parts. The former acquires contours of dispensing
components while the latter is used to motion planning via ROS.

B. YOLOvV5-LIGHT
The first step during dispensing requires information where
dispensing components exist. Traditional template matching

169462

fails to deal with different styles of PCB and has to
spend time adjusting parameters. Thus, for lightweight and
speed, YOLOv5-Light is proposed to detect dispensing
components, which is shown in Fig. 2. Inspired by YOLOVS,
YOLOVS5-Light consists of the backbone, neck and prediction
head. In the backbone, CSA is designed to extract features
from RGB images with fewer parameters. In the neck, GMA
is designed to pay attention to key expressions and acquire
more compact fusion features. Finally, fusion features are fed
into the prediction head to predict the category and position
of components.

To be specific, given a RGB image I € R""*3 where
h and w mean the height and width of the image. it’s fed
into CSA for extracting features efficiently and F ggA =
¢ ; 0csa),i = 1,3,5 would be acquired, where ¢ and
Ocsa mean CSA and learnable parameters in CSA. Then,

F éSS}A is fed into the convolutional layer and spatial pyramid
pooling (SPP) to get the output of the backbone, i.e., F), =
SPP(Conv(F éSS}A)), where Conv means the convolutional layer
and F, means the output of the backbone. Next, F’ gs’:} and F,
are fed into the neck to carry out feature fusion and extract
key expressions. In the neck, GMA is proposed in top-to-
down and down-to-top to emphasize important information
without massive parameters, which can be summarized as:
F,’; = §((Fp, Féls’j}); 6,),1 =1,2,3, where F,’; means fusion
features from different levels. 6 and 6, represent the neck
and learnable parameters in 8. Finally, F} is fed into the
prediction head to predict the category and position of targets,
which can be written as, (0, x,y, h,w, ¢) = H(F,’;; 0r), where
(0, x,y, h,w, c) represents the confidence of the category o,
the center point of the prediction box (x, y), the height and
width of the prediction box (&, w) and the classification
score c respectively. H represents the prediction head and 6,
represents parameters that can be learned in H.

1) CSA

Typical YOLO-series works tend to utilize large-scale
networks such as C3 with large parameters to extract
features from input images, which will affect the reasoning
speed of the model. In order to improve the detection
speed while making sure detection accuracy, CSA is
designed in the backbone, in which two lightweight networks
(MobileNetv3 [43] and ShuffleNetv2 [44]) are considered
to acquire lightweight features. To be specific, MobileNetv3
with depthwise convolution is chosen to extract features from
the input RGB image I preliminarily. Then, ShuffleNetv2
is introduced after MobileNetv3 to further extract features,
in which channel shuffle would improve the efficiency of
feature extraction compared to C3. Furthermore, to prevent
gradient explosion and preserve the detailed information of 7,
the basic structure of ShuffleNetv?2 is kept but its activation
function is replaced with SiLU and improved ShuffleNetv2
is named as Si-ShuffleNetv2, which is shown in Fig. 3.
Then, Si-ShuffleNetv2 is repeated by n times to make the
best use of features while ensuring computational efficiency.

VOLUME 13, 2025



S. Yang et al.: Lightweight Multi-Attention Network for Electronic Mount Components Identification

IEEE Access

C3CBAM
Input Concat
GMA!
)
ces Upsample
L1}
) Fésa |
Si-ShffieNetV2 —————_______|
C3CBAM
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FIGURE 2. The structure of the proposed YOLOv5-Light. Compared with original YOLOv5, CSA is proposed to extract
features in a lightweight but effective manner. GMA is introduced into neck to fuse feature maps efficiently.

To utilize features sufficiently without increasing complexity,
here n equals 5. Finally, C3 in the original backbone is
replaced with the proposed CSA as the improved backbone.

Formally, for the input I € R"™*3 it would be fed
into MobileNetv3 and Fp; = €(I) could be acquired,
where € represents MobileNetv3. Then, Fj; is fed into
Si-ShuffleNetv2 for further feature extraction and the output
of CSA from different levels of Si-ShuffleNetv2 could be
obtained, which can be written as,

i i—1 .
Fi = NEED), i=1,2.3.4.5, )

where ); represents the i-th Si-ShuffleNetv2 and F’ éOS}A = Fy.

BN SiLU

3*3 DWConv

BN 3*3 DWConv

1*1 Conv BN
BN SILU
BN SiLU

Channel Shuffle

FIGURE 3. The structure of Si-ShuffleNetv2. DWConv represents
depthwise convolution. In Si-ShuffleNetv2, the stride is set to 3 to ensure
the receptive field and computational efficiency.
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2) GMA

CSA is designed for complexity and computation cost in the
backbone. Compared with backbone, there are also convolu-
tional layers in the original neck for feature fusion to have a
satisfied performance during computation, which takes a lot
of memory and reasoning time. Thus, we rethink the structure
of the original neck and improve validity of semantics.
Following path Aggregation Network (PANet) [46] and
feature pyramid network (FPN) [47], GMA includes top-to-
down and down-to-top, which is shown in Fig. 4. For top-to-
down, GhostConv [45] is utilized to deal with input features
at first and then Fgpog from GhostConv coulod be obtained,
which is computation-efficient without affecting the perfor-
mance of the model. Next, F,, can be acquired through
nearest neighbor upsampling Fgps. Then, Fyy, and features
from CSA are concatenated to fuse features and get F ;.

In the traditional YOLOVS, high-level fused features
will be obtained through C3 from F.,. However, it’s
expected that the neck could focus on more important
semantics while preserve the accuracy of fused features Thus,
C3 is considered to focus on more meaningful expressions.
As is shown in Fig. 5, CBAM [48] is further introduced
into C3. Max pooling and average pooling make C3 extract
more compact features and the improved C3 is known
as C3CBAM. The whole process of up-to-down can be
summarized by:

Fonost = GhostConv(Fippys), 2)
Fup = Upsample(Fghost), (3)
Fear = Cat(Fyp, Fcsa), 4
Four = C3CBAM (Fyp). 5)

The structure of down-to-top is similar to top-to-down,
in which nearest neighbor upsampling is removed and the
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F input F input

Frop—to—
C3CBAM

Faut

down-to-top

Upsample

Fout

top-to-down

FIGURE 4. The structure of GMA. The proposed GMA is divided into
top-to-down and down-to-top. Each relies on lightweight GhostConv to
extract effective features and owns the ability to focus on important
information through C3CBAM.

Channel Attention

MaxPool

(e - 5 - - —{W Il
FIGURE 5. The structure of C3CBAM. CBAM is introduced into the output

of traditional C3 to enable C3 to extract important features from channels
and space.

remaining structure of top-to-down is kept to realize down-
to-top. Specifically, GhostConv is used to fusion features
at first. Then, features from GhostConv and top-to-down
are concatenated and finally C3CBAM is used to extract
important features and increase receptive fields.

3) LOSS FUNCTION

The total loss of YOLOvS5-Light includes classification loss
(Losscjg), localization loss (Lossjycq;) and confidence loss
(LosSconf), which is expressed as:

Losstotal = oLosscls + BLOSSIocal + Y LOSSconf,  (6)

where o, B and y mean weights of Losscis, LosSjocqr and
Losscons tespectively. Binary cross entropy loss (BCELoss)
is chosen as classification loss and confidence loss. BCELoss
can be calculated as:

N
Losspce = — Y yflog(y) + (1 = yDlog(1 —yp), ()

n=1
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where N is the number of positive samples, y; is prediction
probability and y? is the groundtruth label.

For Lossjycq1, CloU [49] is chosen as the localization loss,
which can be denoted as:

2 GT
d,d

Lepy = 1 —IoU + % + v, ®)
ol — IDNDOT| )

Y T DuDeT|’

4 T w2
V= ;(arctanhw — arctanz) ) (10)
1%

(1D

S =T IU v
where D is the predicted bounding box and DST is the
groundtruth bounding box. p(-,-) means the Euclidean
distance. d and d°7 are the central points of D and D7 . v is
a coefficient to measure the consistency of the aspect ratio. w
and h represent the width and height of D while w7 and h¢T
represent the width and height of DT .

C. EDGE DETECTION

After obtaining positions where components exist, it is
necessary to obtain the coordinates of its feature points
to carry out dispensing. Thus, feature points are computed
through edge detection. To reserve enough memory for
YOLOv5-Light on the embedded hardware, parameter-free
Canny [51] is chosen instead deep networks such as Mask
R-CNN [53] for edge detection. However, in the scene of
industrial manufacturing, there’s usually interference during
SMT dispensing, which will affect Canny. Thus, some
changes are introduced to Canny for robustness.

Original Canny includes image filtering, gradient cal-
culation, non-maximum suppression and double threshold
setting [51]. Considering that the dispensing system may
appear Gaussian noise due to aging equipments and image
quality may be affected by light, the median filter is
introduced after image filtering, which is defined as,

Ga(x, y) = Med(g(x, y)) (12)

where G>(x,y) is the gray value of pixels after filtering.
Med() means the median filter and g(x, y) is the gray value
of pixels before filtering.

D. MOTION PLANNING

In the visual part, 2D coordinates of the dispensed compo-
nents contours are obtained. Then, the internal parameter
of the deep camera is used to get the component position
(xc,yc,zc) in the camera coordinate system. Finally, 3D
coordinates (xw, yw, zw) in the base coordinate system can
be calculated as,

xc xXw
yc RT||yw

= 1
2 [0 1] w |’ (13
1 1

where |:§ 71i| is the hand-eye matrix.
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To control the robotic arm, it is necessary to acquire the
position and pose of the target point. The pose can be set
to the fixed according to the glue head vertically downward
during dispensing. Therefore, the position and pose of the
target point are acquired for motion planning of the robotic
arm. In this paper, RRT-Connect [56] is chosen to implement
the motion control of the robotic arm.

IV. EXPERIMENTS

In this part, the proposed dispensing system will be tested
on the dispensing dataset and employed on Jetson Nano.
The effectiveness of YOLOv5-Light would be shown from
qualitative and quantitative results.

A. IMPLEMENT DETAILS

Experiments in this paper are based on 64-bit Ubuntu 18.04
and Python 3.7. YOLOvS5-Light is implemented under
PyTorch. The CPU is an Intel Core i7-11700K. YOLOVS5-
Light is trained on a NVIDIA GeForce RTX 3090 with the
memory of 24GB. During edge deployment, Jetson Nano and
Realsense D455 are used to test the ability of real-time. The
CPU of Jetson Nano is ARMvS Processor rev 1 while the
GPU of Jetson Nano is NVIDIA Tegra X1 with 4 GB. During
training, the learning rate is set to 0.01 and batch size is set to
16. The total epochs are 200 and momentum is set to 0.937.
The weight decay is set to 0.0005.

B. DATASET
Considering that there are few publicly available dispensing
datasets, the dispensing dataset is made. The images for the
dataset come from Kaggle. There are three categories in the
dataset, which includes CPU, RAM, and IO, in which there
are 8730 CPU instances, 2718 RAM instances, and 12246 10
instances. For annotations, we take the minimum bounding
rectangle of each target as the ground-truth bounding box and
label them with Labellmg. During the pre-processing stage,
reasonable data augmentation is carried out for simulating the
complex industrial environment to the dataset. Specifically,
changing the brightness of the images as well as adding
Gaussian noise [42] are adopted. Moreover, during training
YOLOVS5-Light, mosaic augmentation is also adopted to
rearranging four input images into one single image to
improve the ability of robustness of proposed YOLOVS-
Light. Then, hue, saturation and value of images are also
changed. Finally, scaling operation is used to resize the image
to 640 x 640. The hyperparameters of data augmentation are
summarized in Table 1. The augmented dispensing dataset is
divided at a ratio of 8:1:1. There are 10142 samples in the
training set, 1253 samples in the test set and 1127 samples in
the validation set. Each picture contains at least one category
and some examples are shown in Fig. 6, where the green box
means CPU, the purple box means RAM and the red box
means 0.

Moreover, K-means clustering is used on the dispensing
training set bounding boxes to explore reasonable anchor
scales for tiny targets. K-means with distance metric
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TABLE 1. Hyperparameters for data augmentation.

Parameter Value
Brightness 0.7
Gaussian noise 0.06

Hue 0.015
Saturation 0.7
Value 0.4
Mosaic 1.0

can be written as,
d(box, cluster) = 1 — IoU (box, cluster), (14)

where IoU means intersection over union. d means the
distance between boxes and clusters. In Fig. 7, it’s seen that if
K-means doesn’t work, YOLOV5-Light will converge slower
than using K-means, which indicates that K-means assists the
model to find the appropriate scale for tiny objects and make
it converge faster.

(a) (b) (©
FIGURE 6. Examples from the dispensing dataset. CPU is described in

green boxes. RAM is described in purple boxes while 10 is described in
red boxes.

loss-epoch

0.225 4 —— KMeans

no-K-Means
0.200 4
0.175 1

0.150 4

loss

0.125 4

0.100 +

0.075 4

0.050 4

0.025 4

T T T T T T T T T
0 25 50 75 100 125 150 175 200
epoch

FIGURE 7. The loss-epoch curves with K-means.

C. EVALUATION METRICS
YOLOVS5-Light is evaluated from accuracy, the ability of
real-time and space complexity. For accuracy, mean average
precision (mAP) is chosen as the metric, which can be
denoted as:

>2  AP(g)

AP="—"1C_ 15
m 0 (15)
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TABLE 2. Results of different methods on the dispensing dataset.

Model mAP@.5 mAP@.75 mAP F1-score Speed Params  FPS on Jetson
YOLOVS5s 0.996 0.995 0.966 0.979 7.3ms 10.2MB 3
YOLOvV3 0.990 0.990 0.981 0.974 8.7ms 117.8MB 1
YOLOv3-tiny 0.989 0.987 0.944 0.968 1.7ms 17.4MB 7
YOLOV5-Lite-g 0.993 0.977 0.923 0.971 6.8ms 11.3MB 2
YOLOV5-Lite-s 0.991 0.985 0.916 0.971 1.6ms 3.4MB 9
YOLOvV7 0.971 0.97 0.968 0.947 70.94ms  74.8MB 0.6
YOLOvVS8 0.987 0.986 0.983 0.970 1433ms  22.5MB 0.2
Mamba-YOLO 0.983 0.983 0.982 0.950 49.19ms  12.3MB 1
YOLOv6n 0.988 0.988 0.986 0.978 5.2ms 8.7MB 5
YOLOV7-tiny 0.893 0.893 0.791 0.888 4.8ms 12.3MB 6
YOLOv8n 0.985 0.985 0.983 0.976 5.6ms 6.2MB 4
YOLOV9 0.991 0.989 0.989 0.975 5.9ms 15.2MB 3
YOLOv10 0.988 0.984 0.984 0.972 5.0ms 5.7MB 6
YOLOV5-Light(Ours) 0.995 0.994 0.975 0.984 1.0ms 6.2MB 17

The best results are in bold while the second best are underlined.

where Q is the number of categories. AP(g) means the average

precision at a certain category. In this paper, mnAP@.5 when

IoU is 0.5, mAP@.75 when IoU is 0.75 and average mAP

when IoU increases from 0.5 to 0.95 in steps of 0.05 are

chosen as evaluation metrics. Moreover, F1-score is chosen

as united measurement of precision and recall, which can be

expressed as:

2-P-R

P+R’

where P represents precision and R represents recall.

For the ability of real-time, frames per second (FPS) testing

on Jetson Nano and Real-Sense D455 is chosen as the metric,
which can be written as:

F1 — score = (16)

Fps = Nims
Seconds

where Ny, is the number of processed images and Seconds is
the time that reasons these images. Also, the inference speed
before deployment is chosen as another real-time metric. For
space complexity, the size of the parameters generated after
training is chosen. Moreover, FLOPs and the memory usage
during the training are also chosen for evaluating complexity.

a7

D. COMPARISON

YOLOvVS5-Light is compared with different models and
relevant results are summarized in Table 2. It can be
seen that compared with YOLOVSs, accuracy of YOLOvVS-
Light is decreased a little but the detection speed increases
by 84.1%. Spatial complexity of YOLOvS5-Light improves
by 39.2% and FPS increases a lot from 3 to 17. Compared
with YOLOv3, YOLOv3-tiny, YOLOv4, YOLOv8 and
latest Mamba-YOLO, it’s found that YOLOvS5-Light is
excellent in terms of accuracy and speed. Even the fastest
YOLOV5-Lite-s, the reasoning speed is still slower than
YOLOVS5-Light, which improves from 1.6ms to 1.0ms while
FPS increases from 79 to 17. Compared with YOLOvS5-Lite,
YOLOv5-Light still owns higher accuracy and faster speed,
but it’s more complex than YOLOVS5-Lite-s (3.4MB) and less
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complex than YOLOv5-Lite-g (11.3MB), which indicates
low space complexity does not mean fast detection speed.
The FPS of YOLOv8 and Mamba-YOLO are 0.2 and 1,
which are not advantageous in actual deployment. Moreover,
when different models are deployed on Jetson Nano respec-
tively, it’s shown that FPS of YOLOvS5s is 3 in real-time
detection, FPS of YOLOvS5-Lite-g and YOLOv5-Lite-s are
2 and 9 respectively while FPS of YOLOv5-Light is 17,
which increases a lot and further explains the outstanding
performance of lightweight and real-time of YOLOvS5-Light.

E. ABLATION STUDY

Next, ablation studies are carried out to analyze effects
of proposed modules in YOLOvS5-Light and results are
shown in Table 3, in which “w/0o” in the table means
“without” and “w/” means “with”. It’s seen that the
original YOLOvSs holds a higher accuracy while it is
time-consuming and complex. When GMA is introduced
into YOLOvS5s, mAP@.5 drops from 0.996 to 0.99 while
inference speed increases by 66.7% and module complexity
improves from 10.2MB to 9.4MB. When CSA is introduced
into YOLOV5s and the result shows that mAP@.75 decreases
from 0.995 to 0.99 but speed improves from 6.3ms to 1.2ms.
Further, it’s found that compared with GMA, the model
performance can be improved better by CSA, which indicates
that backbone features extracted by CSA contain important
semantic expressions with less computational complexity.
Moreover, it also shows that the quality of features extracted
by backbone affects detection performance. When SiLU
is introduced into CSA, it could achieve higher mAP,
which means compared with ReLU, SiLU could retain
more valid information. Finally, both of CSA and GMA
are introduced into YOLOVS5s and the performance reaches
the best.

Moreover, YOLOv5-Light has significant advantages in
computational efficiency and resource consumption. For
example, after introducing CSA and GMA, FLOPs are signif-
icantly reduced, in which decreases from 16.4G to 1.6G, and
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FIGURE 8. The visualization of detection results. YOLOv5-Light is tested in various environments, including angle transformation, brightness
transformation and Gaussian noise on different styles of PCB. As PCB images is fed into YOLOv5-Light, the class and position of target will be
annotated. In figures, red boxes mean CPU while pink boxes mean RAM and orange boxes mean IO.

FIGURE 9. Results of real-time detection. YOLOv5-Light is deployed on Jetson Nano and test the performance of real-time with Realsense D455.
Results indicate that YOLOv5-Light can quickly detect targets as D455 captures images. In pictures, FPS is displayed in white in the upper left corner.
CPU is described in purple boxes. RAM is described in pink boxes while 10 is described in green or red boxes.

the memory usage also decreases from 3.59GB to 0.95GB.
It’s indicated that YOLOvS5-Light greatly optimizes the uti-
lization of computing resources while ensuring high detection
accuracy. Therefore, YOLOvS5-Light not only achieves a
balance between accuracy and speed, but also demonstrates
significant advantages in computational overhead and mem-
ory usage, making it more efficient and scalable in real-time
detection scenarios.

F. QUALITATIVE RESULTS

Visualization detection results of YOLOvS5-Light are shown
in Fig. 8. In the dispensing dataset, there are many
different styles of PCB. However, it’s seen that YOLOvS5-
Light could still detect targets regardless of styles of
PCB, which is different from traditional template matching
and is more intelligent. In addition, even in the case
of angle transformation, brightness transformation and
Gaussian noise existing, YOLOv5-Light is robust to the
noise.
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Moreover, for the purpose of lightweight and real-time
detection, YOLOVS5-Light is deployed on Jetson Nano and
realize real-time detection with Realsense D455, which is
shown in Fig. 9. It can be seen that YOLOvVS5-Light could
work on dispensing components detection in fast speed. Even
if components are partially obstructed, YOLOv5-Light could
still detect dispensing targets, which further illustrate the
robustness of YOLOvS5-Light.

After dispensing components are detected by YOLOVS5-
Light, edge coordinates will be extracted from the area in
which components exist. Note that in order to ensure the
effective extraction of contours, predicted boxes are expected
to zoom in appropriately during inference and visualization
results of three kinds of components are shown in Fig. 10.
The first row is the area of the detected components (CPU,
RAM and I0) and the second row is the robust Canny
for edge detection while the third is the original Canny.
It’s seen that compared with the improved Canny, original
Canny is more susceptible to noise and not suitable for
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TABLE 3. Ablation study on different proposed modules.

Model mAP@.5 mAP@.75 mAP Fl-score Speed Params FLOPs Memory Usage

YOLOVvVSs 0.996 0.995 0.966 0.979 6.3ms  10.2MB 16.4G 3.59GB
YOLOvV5s+GMA 0.990 0.990 0.982 0.975 2.1lms  9.4MB 13.7G 3.40GB
YOLOvV5s+CSA 0.991 0.990 0.949 0.976 1.2ms  6.7MB 2.2G 0.98GB

(w/o SiLU)
YOLOvV5s+CSA 0.992 0.991 0.952 0.978 1.2ms  6.7MB 2.2G 0.99GB

(w/ SiLU)
YOLOvSs+GMA+CSA 0.993 0.992 0.973 0.983 1.0ms  6.2MB 1.6G 0.93GB

(w/o SiLU)
YOLOvV5s+GMA+CSA(Ours) 0.995 0.994 0.975 0.984 1.0ms 6.2MB 1.6G 0.95GB

FIGURE 10. The visualization results of three kinds of components.
(a) CPU; (b) RAM; (c) 10; (d)~(f) robust Canny; (g)~(i) original Canny;
(§)~(1) Hough transform.

the complex and changeable industrial environment. Thus,
it shows that the robust Canny could resist noise. The fourth
row is visualization of Hough transform detection results.
According to the above, it can be seen that components
contours could be extracted accurately.

G. GENERALIZATION

To further demonstrate the superiority of YOLOvS5-Light,
experiments are implemented on the public PCB defect
detection dataset (VOC-PCB) [65] for generalization, which
are summarized in Table 4. It’s seen that even if the
dataset is replaced, YOLOvVS5-Light could still reach satis-
fied performance in terms of speed and accuracy. To be
specific, mAP@.5 of YOLOv5-Light is 0.994, which is the
highest among different methods. Also, though mAP@.75
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of YOLOv5-Light is not the best, it can be ranked third,
which is 0.076 higher than YOLOvS5s. For inference speed,
it’s seen that the proposed YOLOvV5-Light could reach the
fastest speed on VOC-PCB, which is improved by nearly two
orders of magnitude compared to YOLOv8 while owning a
smaller number of parameters.

H. HAND-EYE CALIBRATION

Majority methods need to use software development
kit (SDK) of the robotic arm for hand-eye calibration and the
precision requirements for the robotic arm are strict. Unlike
them, an online calibration method based on ROS is utilized.
Specifically, transform (TF) in ROS is used to release the
transformation relationship between the base and the end of
the robotic arm. Compared with SDK, TF can simply adapt
to any kinds of robots in theory, which is independent. Then
the hand-eye calibration package in ROS is used to obtain
the pose of the calibration board in different movements as
shown in Fig. 11. The hand-eye matrix between the camera
coordinate system and the robot base coordinate system can
be solved by ROS based. Finally, the hand-eye matrix is
solved as follows.

—0.998  0.050 —-0.023 —-0.018
0.055 0.942 —0.330 0.317
0.005 —-0.331 —-0.944  0.335

0 0 0 1

To visualize calibration results, the hand-eye matrix is
published to ROS and the result is shown as in Fig. 12. It’ seen
that the hand-eye matrix could effectively map the relative
position of the robotic arm and D455, and the accuracy of
the matrix would be reflected by success rates of robotic arm
manipulation(Sec. IV-G).

I. DISPENSING ON JETSON NANO

YOLOVS5-Light is deployed on Jetson Nano for real-time
detection and the test of the whole dispensing system is as
follows: after acquiring the pixel coordinates of the contour
feature points of the dispensing component through the
visual part, the coordinates in the robot base coordinate
system are obtained through coordinate transformation.
Motion planning is carried out to realize dispensing by
ROS, which means Dofbot is controlled to dispense at
the edge of components and the error that is shown
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FIGURE 11. The process of hand-eye calibration.

TABLE 4. Results of different methods on VOC-PCB.

Model mAP@.5 mAP@.75 mAP Fl-score  Speed Params
YOLOV5s 0.991 0.811 0.680 0.988 3.3ms 14.4MB
YOLOv3 0.992 0.904 0.815 0.986 11.5ms 123.6MB
YOLOV3-tiny 0.989 0.798 0.669 0.985 2.8ms 17.5MB
YOLOV5-Lite-g 0.991 0.748 0.639 0.983 4.5ms 11.3MB
YOLOVv5-Lite-s 0.989 0.584 0.564 0.981 4.2ms 3.4MB
YOLOv7 0.983 0.565 0.563 0.977 11.6ms  74.9MB
YOLOvS 0.993 0.934 0.811 0.989 1253ms  22.5MB
Mamba-YOLO 0.989 0.860 0.728 0.980 11.2ms 12.3MB
YOLOv6n 0.982 0.556 0.545 0.965 2.8ms 8.3MB
YOLOV7-tiny 0.955 0.419 0.492 0.921 3.2ms 12.3MB
YOLOvVSn 0.986 0.614 0.575 0.977 2.9ms 6.2MB
YOLOVY 0.986 0.70 0.617 0.984 4.5ms 15.2MB
YOLOv10 0.973 0.612 0.575 0.941 2.6ms 5.7MB
YOLOVvS5-Light(Ours) 0.994 0.887 0.625 0.985 2.1ms 8.0MB

FIGURE 12. The visualization of hand-eye calibration. The blue line represents the
z-axis; the red line represents the x-axis; the green line represents the y-axis.
The camera is on the left and Dofbot is on the right.

in Fig.13 is set to 1cm. The regions between two orange the situation of “plan success” means success of motion
rectangles during dispensing are regarded as successfully planning and ROS would send signals to control Dofbot to
operations. The whole process shown in Fig.14, in which dispense. In addition, the situation of *“‘plan error”’ may occur
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TABLE 5. Average components dispensing success rates of different
models.

Model CPU RAM IO
YOLOVSs 0.85 070  0.90
YOLOv3 0.65 0.65  0.85
YOLOV3-tiny 0.65 0.55 0.80
YOLOv4 0.70 0.60  0.80
YOLOvS5-Lite-g 0.60 0.55 0.85
YOLOVvS-Lite-s 0.55 050 0.75
YOLOv8 0.70 0.45 0.85
Mamba-YOLO 0.65 0.45 0.70
YOLOvé6n 0.65 0.60  0.75
YOLOV7-tiny 0.45 040  0.55
YOLOvV8n 0.65 0.55 0.70
YOLOvV9 0.70 0.60  0.65
YOLOv10 0.65 0.55 0.65

YOLOv5-Light(Ours)  0.75  0.65 0.8

FIGURE 13. The error of dispensing. The green rectangle means the ideal
trajectory. The area between two orange rectangles mean acceptable
error regions.

FIGURE 14. The test for the dispensing system. The appearance of “plan
success” means the success of motion planning.

when ROS works on motion planning because the accuracy
requirements of ROS for the end pose of Dofbot is not within
the allowed error range, which may lead to the solution
failure. It may caused by parameters, the accuracy of hand-
eye calibration or the structure of the robot. Three kinds
of dispensing components (CPU, RAM and 10) are tested
20 times on different models respectively and average rates
of success are summarized in Table 5.

From Table 2 and Table 5, It’s seen that though YOLOVS5-
Light could not reach the highest success rates, it still achieve
the second and own fast inference speed, which means it
could realize real-time detection without affecting accuracy
a lot. Moreover, it’s seen that success rates of CPU and 10
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are higher than that of RAM, which is because RAM has a
similar appearance to CPU but covers an smaller area than
CPU, it might fail to detect RAM so that the success rate of
RAM is lower than that of CPU during dispensing.

V. CONCLUSION

In this paper, a YOLOvS5-based lightweight multi-attention
detection network is proposed for SMT dispensing electronic
mount components identification, in which cross and shuffle
attention (CSA) and ghost and multi-attention (GMA)
modules are designed to reduce computational complexity
and locate dispensing components rapidly. The proposed
model is verified in realistic SMT intelligent dispensing
system, which is divided into visual part and control part.
Experiments on the dispensing dataset show that the proposed
YOLOV5-Light could implement real-time detection without
affecting accuracy seriously. The mAP@.5 of YOLOVS-
Light on the dispensing dataset is 99.5% and FPS on
the NVIDIA hardware Jetson Nano is 17, which means
YOLOv5-Light could improve deployment costs and work as
a strong baseline in SMT dispensing.

Limitations: However, YOLOv5-Light exhibits notable
limitations in practical deployment scenarios. When encoun-
tering previously unseen component types or modified PCB
layouts, the static nature of its pretrained weights may lead to
detection failures or misclassifications. Moreover, successful
contour extraction requires near-perpendicular alignment
between the PCB plane and camera optical axis. Finally,
YOLOVS5-Light reaches 17 FPS on Jetson Nano, which still
falls below the requirement for high-speed SMT component
placement systems and may hinder synchronization with
rapid production line operations. We leave these for future
works.
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